3.188 \(\int \frac{x^2}{\sqrt{a+b \cos ^{-1}(c x)}} \, dx\)

Optimal. Leaf size=223 \[ \frac{\sqrt{\frac{\pi }{2}} \sin \left (\frac{a}{b}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}+\frac{\sqrt{\frac{\pi }{6}} \sin \left (\frac{3 a}{b}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}-\frac{\sqrt{\frac{\pi }{2}} \cos \left (\frac{a}{b}\right ) S\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}-\frac{\sqrt{\frac{\pi }{6}} \cos \left (\frac{3 a}{b}\right ) S\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3} \]

[Out]

-(Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]])/(2*Sqrt[b]*c^3) - (Sqrt[Pi/6]*Co
s[(3*a)/b]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]])/(2*Sqrt[b]*c^3) + (Sqrt[Pi/2]*FresnelC[(Sqr
t[2/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]]*Sin[a/b])/(2*Sqrt[b]*c^3) + (Sqrt[Pi/6]*FresnelC[(Sqrt[6/Pi]*Sqrt[a
+ b*ArcCos[c*x]])/Sqrt[b]]*Sin[(3*a)/b])/(2*Sqrt[b]*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.370696, antiderivative size = 223, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 7, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.438, Rules used = {4636, 4406, 3306, 3305, 3351, 3304, 3352} \[ \frac{\sqrt{\frac{\pi }{2}} \sin \left (\frac{a}{b}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}+\frac{\sqrt{\frac{\pi }{6}} \sin \left (\frac{3 a}{b}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}-\frac{\sqrt{\frac{\pi }{2}} \cos \left (\frac{a}{b}\right ) S\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}-\frac{\sqrt{\frac{\pi }{6}} \cos \left (\frac{3 a}{b}\right ) S\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[a + b*ArcCos[c*x]],x]

[Out]

-(Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]])/(2*Sqrt[b]*c^3) - (Sqrt[Pi/6]*Co
s[(3*a)/b]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]])/(2*Sqrt[b]*c^3) + (Sqrt[Pi/2]*FresnelC[(Sqr
t[2/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]]*Sin[a/b])/(2*Sqrt[b]*c^3) + (Sqrt[Pi/6]*FresnelC[(Sqrt[6/Pi]*Sqrt[a
+ b*ArcCos[c*x]])/Sqrt[b]]*Sin[(3*a)/b])/(2*Sqrt[b]*c^3)

Rule 4636

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b*
x)^n*Cos[x]^m*Sin[x], x], x, ArcCos[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{a+b \cos ^{-1}(c x)}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{\cos ^2(x) \sin (x)}{\sqrt{a+b x}} \, dx,x,\cos ^{-1}(c x)\right )}{c^3}\\ &=-\frac{\operatorname{Subst}\left (\int \left (\frac{\sin (x)}{4 \sqrt{a+b x}}+\frac{\sin (3 x)}{4 \sqrt{a+b x}}\right ) \, dx,x,\cos ^{-1}(c x)\right )}{c^3}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{\sin (x)}{\sqrt{a+b x}} \, dx,x,\cos ^{-1}(c x)\right )}{4 c^3}-\frac{\operatorname{Subst}\left (\int \frac{\sin (3 x)}{\sqrt{a+b x}} \, dx,x,\cos ^{-1}(c x)\right )}{4 c^3}\\ &=-\frac{\cos \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{a}{b}+x\right )}{\sqrt{a+b x}} \, dx,x,\cos ^{-1}(c x)\right )}{4 c^3}-\frac{\cos \left (\frac{3 a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{3 a}{b}+3 x\right )}{\sqrt{a+b x}} \, dx,x,\cos ^{-1}(c x)\right )}{4 c^3}+\frac{\sin \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{a}{b}+x\right )}{\sqrt{a+b x}} \, dx,x,\cos ^{-1}(c x)\right )}{4 c^3}+\frac{\sin \left (\frac{3 a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{3 a}{b}+3 x\right )}{\sqrt{a+b x}} \, dx,x,\cos ^{-1}(c x)\right )}{4 c^3}\\ &=-\frac{\cos \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \sin \left (\frac{x^2}{b}\right ) \, dx,x,\sqrt{a+b \cos ^{-1}(c x)}\right )}{2 b c^3}-\frac{\cos \left (\frac{3 a}{b}\right ) \operatorname{Subst}\left (\int \sin \left (\frac{3 x^2}{b}\right ) \, dx,x,\sqrt{a+b \cos ^{-1}(c x)}\right )}{2 b c^3}+\frac{\sin \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \cos \left (\frac{x^2}{b}\right ) \, dx,x,\sqrt{a+b \cos ^{-1}(c x)}\right )}{2 b c^3}+\frac{\sin \left (\frac{3 a}{b}\right ) \operatorname{Subst}\left (\int \cos \left (\frac{3 x^2}{b}\right ) \, dx,x,\sqrt{a+b \cos ^{-1}(c x)}\right )}{2 b c^3}\\ &=-\frac{\sqrt{\frac{\pi }{2}} \cos \left (\frac{a}{b}\right ) S\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}-\frac{\sqrt{\frac{\pi }{6}} \cos \left (\frac{3 a}{b}\right ) S\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right )}{2 \sqrt{b} c^3}+\frac{\sqrt{\frac{\pi }{2}} C\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right ) \sin \left (\frac{a}{b}\right )}{2 \sqrt{b} c^3}+\frac{\sqrt{\frac{\pi }{6}} C\left (\frac{\sqrt{\frac{6}{\pi }} \sqrt{a+b \cos ^{-1}(c x)}}{\sqrt{b}}\right ) \sin \left (\frac{3 a}{b}\right )}{2 \sqrt{b} c^3}\\ \end{align*}

Mathematica [C]  time = 0.421384, size = 225, normalized size = 1.01 \[ \frac{e^{-\frac{3 i a}{b}} \left (3 e^{\frac{2 i a}{b}} \sqrt{-\frac{i \left (a+b \cos ^{-1}(c x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{i \left (a+b \cos ^{-1}(c x)\right )}{b}\right )+3 e^{\frac{4 i a}{b}} \sqrt{\frac{i \left (a+b \cos ^{-1}(c x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},\frac{i \left (a+b \cos ^{-1}(c x)\right )}{b}\right )+\sqrt{3} \left (\sqrt{-\frac{i \left (a+b \cos ^{-1}(c x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{3 i \left (a+b \cos ^{-1}(c x)\right )}{b}\right )+e^{\frac{6 i a}{b}} \sqrt{\frac{i \left (a+b \cos ^{-1}(c x)\right )}{b}} \text{Gamma}\left (\frac{1}{2},\frac{3 i \left (a+b \cos ^{-1}(c x)\right )}{b}\right )\right )\right )}{24 c^3 \sqrt{a+b \cos ^{-1}(c x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2/Sqrt[a + b*ArcCos[c*x]],x]

[Out]

(3*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcCos[c*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcCos[c*x]))/b] + 3*E^(((4*I)*a
)/b)*Sqrt[(I*(a + b*ArcCos[c*x]))/b]*Gamma[1/2, (I*(a + b*ArcCos[c*x]))/b] + Sqrt[3]*(Sqrt[((-I)*(a + b*ArcCos
[c*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcCos[c*x]))/b] + E^(((6*I)*a)/b)*Sqrt[(I*(a + b*ArcCos[c*x]))/b]*Gamma[
1/2, ((3*I)*(a + b*ArcCos[c*x]))/b]))/(24*c^3*E^(((3*I)*a)/b)*Sqrt[a + b*ArcCos[c*x]])

________________________________________________________________________________________

Maple [A]  time = 0.085, size = 167, normalized size = 0.8 \begin{align*} -{\frac{\sqrt{2}\sqrt{\pi }}{12\,{c}^{3}}\sqrt{{b}^{-1}} \left ( \sqrt{3}\cos \left ( 3\,{\frac{a}{b}} \right ){\it FresnelS} \left ({\frac{\sqrt{2}\sqrt{3}}{\sqrt{\pi }b}\sqrt{a+b\arccos \left ( cx \right ) }{\frac{1}{\sqrt{{b}^{-1}}}}} \right ) -\sqrt{3}\sin \left ( 3\,{\frac{a}{b}} \right ){\it FresnelC} \left ({\frac{\sqrt{2}\sqrt{3}}{\sqrt{\pi }b}\sqrt{a+b\arccos \left ( cx \right ) }{\frac{1}{\sqrt{{b}^{-1}}}}} \right ) +3\,\cos \left ({\frac{a}{b}} \right ){\it FresnelS} \left ({\frac{\sqrt{2}\sqrt{a+b\arccos \left ( cx \right ) }}{\sqrt{\pi }\sqrt{{b}^{-1}}b}} \right ) -3\,\sin \left ({\frac{a}{b}} \right ){\it FresnelC} \left ({\frac{\sqrt{2}\sqrt{a+b\arccos \left ( cx \right ) }}{\sqrt{\pi }\sqrt{{b}^{-1}}b}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*arccos(c*x))^(1/2),x)

[Out]

-1/12/c^3*2^(1/2)*(1/b)^(1/2)*Pi^(1/2)*(3^(1/2)*cos(3*a/b)*FresnelS(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*
arccos(c*x))^(1/2)/b)-3^(1/2)*sin(3*a/b)*FresnelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arccos(c*x))^(1/2)
/b)+3*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arccos(c*x))^(1/2)/b)-3*sin(a/b)*FresnelC(2^(1/2)/Pi
^(1/2)/(1/b)^(1/2)*(a+b*arccos(c*x))^(1/2)/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{b \arccos \left (c x\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccos(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(b*arccos(c*x) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccos(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + b \operatorname{acos}{\left (c x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*acos(c*x))**(1/2),x)

[Out]

Integral(x**2/sqrt(a + b*acos(c*x)), x)

________________________________________________________________________________________

Giac [A]  time = 2.086, size = 446, normalized size = 2. \begin{align*} \frac{\sqrt{\pi } i \operatorname{erf}\left (-\frac{\sqrt{6} \sqrt{b \arccos \left (c x\right ) + a} \sqrt{b} i}{2 \,{\left | b \right |}} - \frac{\sqrt{6} \sqrt{b \arccos \left (c x\right ) + a}}{2 \, \sqrt{b}}\right ) e^{\left (\frac{3 \, a i}{b}\right )}}{4 \,{\left (\frac{\sqrt{6} b^{\frac{3}{2}} i}{{\left | b \right |}} + \sqrt{6} \sqrt{b}\right )} c^{3}} + \frac{\sqrt{\pi } i \operatorname{erf}\left (-\frac{\sqrt{2} \sqrt{b \arccos \left (c x\right ) + a} i}{2 \, \sqrt{{\left | b \right |}}} - \frac{\sqrt{2} \sqrt{b \arccos \left (c x\right ) + a} \sqrt{{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac{a i}{b}\right )}}{4 \,{\left (\frac{\sqrt{2} b i}{\sqrt{{\left | b \right |}}} + \sqrt{2} \sqrt{{\left | b \right |}}\right )} c^{3}} + \frac{\sqrt{\pi } i \operatorname{erf}\left (\frac{\sqrt{2} \sqrt{b \arccos \left (c x\right ) + a} i}{2 \, \sqrt{{\left | b \right |}}} - \frac{\sqrt{2} \sqrt{b \arccos \left (c x\right ) + a} \sqrt{{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac{a i}{b}\right )}}{4 \,{\left (\frac{\sqrt{2} b i}{\sqrt{{\left | b \right |}}} - \sqrt{2} \sqrt{{\left | b \right |}}\right )} c^{3}} + \frac{\sqrt{\pi } i \operatorname{erf}\left (\frac{\sqrt{6} \sqrt{b \arccos \left (c x\right ) + a} \sqrt{b} i}{2 \,{\left | b \right |}} - \frac{\sqrt{6} \sqrt{b \arccos \left (c x\right ) + a}}{2 \, \sqrt{b}}\right ) e^{\left (-\frac{3 \, a i}{b}\right )}}{4 \,{\left (\frac{\sqrt{6} b^{\frac{3}{2}} i}{{\left | b \right |}} - \sqrt{6} \sqrt{b}\right )} c^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccos(c*x))^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(pi)*i*erf(-1/2*sqrt(6)*sqrt(b*arccos(c*x) + a)*sqrt(b)*i/abs(b) - 1/2*sqrt(6)*sqrt(b*arccos(c*x) + a)
/sqrt(b))*e^(3*a*i/b)/((sqrt(6)*b^(3/2)*i/abs(b) + sqrt(6)*sqrt(b))*c^3) + 1/4*sqrt(pi)*i*erf(-1/2*sqrt(2)*sqr
t(b*arccos(c*x) + a)*i/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arccos(c*x) + a)*sqrt(abs(b))/b)*e^(a*i/b)/((sqrt(2)*
b*i/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))*c^3) + 1/4*sqrt(pi)*i*erf(1/2*sqrt(2)*sqrt(b*arccos(c*x) + a)*i/sqrt(
abs(b)) - 1/2*sqrt(2)*sqrt(b*arccos(c*x) + a)*sqrt(abs(b))/b)*e^(-a*i/b)/((sqrt(2)*b*i/sqrt(abs(b)) - sqrt(2)*
sqrt(abs(b)))*c^3) + 1/4*sqrt(pi)*i*erf(1/2*sqrt(6)*sqrt(b*arccos(c*x) + a)*sqrt(b)*i/abs(b) - 1/2*sqrt(6)*sqr
t(b*arccos(c*x) + a)/sqrt(b))*e^(-3*a*i/b)/((sqrt(6)*b^(3/2)*i/abs(b) - sqrt(6)*sqrt(b))*c^3)